

60GHz Usage & Requirements

Robert Paxman Corporate Product Regulations and Standards Intel Corporation

Key Discussion Items

- Two types of scenarios
- 60 GHz Usages
- Conducted power requirements
- Antenna (Beam-forming versus Omni-directional)
- RF exposure evaluation
- Recommendations

Two types of scenarios

- Point to Point Systems
 - Some of the original rules originally were written for this scenario
 - Far Field usage condition
 - Typically high antenna gains, parabolic type P2P pole mount antenna systems

- Mobile & Portable Systems
 - Smaller multi-element active antenna array systems

60GHz Usages

02/22/2015

©Intel Corporation

Output Power Limits

- US (FCC Part 15.255, <u>KDB</u> 200443 (4 documents))
 - 500mW conducted power
 - Typically calculated based on EIRP-Antenna gain
 - Not able to measure directly as antenna is mounted directly to radio silicon
 - 43dBm Peak EIRP
 - 40dBm Average EIRP
- EU (R&TTE 1999/5/EC, EN 302 567)
 - 40dBm Average EIRP
 - No conducted limit specified

Antennas – Beam-forming versus Omni-Directional

- Beam-forming typically used for mobile or portable applications
 - Primary use is in room proximity to the other transceiver
 - Lower cost and lower power consumption
- Omni-Directional antennas are either low gain or require significant power to achieve higher gain to make up for the propagation loss.
 - Larger devices can allow for higher power directly at the antenna system to achieve higher gains
 - Not really feasible in mobile or portable designs due to power consumption to allow for reasonable range

RF Exposure Evaluation

- Power Density
 - Far Field fixed & temporary fixed
 - Calculation based on power density equation found in both ICNIRP and FCC
 - Typical distances of 20cm or more
 - Power Density calculation valid for Far Field

 $S = \frac{EIRP}{4\pi R^2}$ $S = Power Density in mW/cm^2$ EIRP = Effective Isotropic Radiated Power (in mW) R = Distance to antenna (in cm) $Limit = 1mW/cm^2 (FCC) = 10W/m^2 (ICNIRP)$

- Near Field Numerical modeling required
 - Accurate and accepted by FCC, Industry Canada and EU under the R&TTE Directive
 - Power density equation breaks down and is no longer accurate within the transition field and near field regions
 - SAR (Specific Absorption Rate) testing is not feasible
 - No liquid simulant above 10 GHz
 - No SAR systems or probes above 10 GHz

Recommendations

- Conducted power limit
 - If used, should be coupled with EIRP
 - Drives limitation on antenna gain based on an EIRP prevailing limit
- Allowance for numerical modeling to assess RF exposure in the near field