MIC-MRA Workshop

Challenges in the evaluation of IEEE 802.11ad (60 GHz) signals

Discussion on dynamic, test procedures, etc.

ROHDE & SCHWARZ International Operations Christian Reimer

Signal Generation / Analysis Modulated Signal

High effort to provide with a 2 GHz-BW signal on the transmitter side.

Upconverter example with discrete RF components.

Image-free Ranges

Distance between true signal and image signal depends on analyzer IF. Distance = 2*IF 4 GHz 4 GHz 4 GHz 6 GHz 6 GHz 1 mage

True signal

Example: evaluation of pulsed signal pulse length 10 ns and PRF 10 MHz.

IF = 1.32 GHz for FSW built until Q2/2014. IF = 2.0 GHz available for FSW built after Q2/2014

Image-free Ranges

Modulated Signal

Image-free Ranges

Distance between true signal and image signal depends on analyzer IF.

Distance = 2*IFTrue Image signal signal 2 GHz and an and the stand later of the later of the stand of the Example: evaluation of CW signal (without image exclusion).

Image removal possible for CW signals by Auto ID procedure

Image-Removal for CW Signals

□ How to identify the real signal out of the mixture ?

- Two different sweeps are necessary to identify the real signal
- Measurement sweep and reference sweep must have an LO frequency offset of 2*f_{IF}
- For measurement sweep the lower sideband and for reference sweep the upper sideband is wanted
- Lower and upper sidebands of the real signal are displayed at the same position in measurement and reference sweep (only for m=m' !)

Applies to harmonic mixer with LO and IF controlled by analyzer

Image-Removal for CW Signals

Image-Removal for CW Signals

Applies to harmonic mixer with LO and IF controlled by analyzer. Function name: Auto ID

Transmit Mask

- Referenced to peak power
- Identical for all packet types
- ∎ RBW = 1MHz
- I Packet Length ≤ 10µs

Transmit Mask

YIG Preselection Filter

Efforts for Trigger

If the PRF is known for the transmit mask measurement procedures, then the sweep speed can be defined easily and no special trigger source is required.

Signal Characteristic Radiated measurement. DUT: commercial PC

HDE&SCHWARZ

Signal Characteristic Radiated measurement. DUT: commercial PC

Date: 30. JAN 2015 13:00:14

Signal Characteristic Radiated measurement. DUT: commercial PC

Date: 30.JAN.2015 13:06:14

Phase Shift Indication w/o Synch on GI

Signal before upconversion.

Phase Shift Indication w/o Synch on GI

Signal on desired channel. Longer capture buffer.

Vector signal analysis not tracked on GI

17

Phase Shift Indication w/o Synch on GI

Signal on desired channel. Shorter capture buffer.

Vector signal analysis not tracked on GI

Measurement Setup

Golden Device? Substitution method? Reference antenna? Efficient test methods?

I Patch antennas require measurements over the air

- Anechoic chamber or compact antenna test range with
 - Horn antenna for Tx and Rx tests
 - Rotating Mount to test / verify beamforming

Dynamic Considerations

Analyzer without inbuilt Preamplifier

Distance / m	0.3	0.5	1	2	3
EIRP (Tx) / dBm	30	30	30	30	30
Free Space Loss / dB	58	62	68	74	78
Arriving level / dBm	-28	-32	-38	-44	-48
Gain of Receiver Horn	25	25	25	25	25
Level at receive antenna output / dBm	-3	-7	-13	-19	-23
Loss by wave guide and other loss (budget) / dB	10	10	10	10	10
Level at analyzer input	-13	-17	-23	-29	-33
Attenuator of analyzer / dB	0	0	0	0	0
Level after attenuator / dBm	-13	-17	-23	-29	-33
Preamplifier Gain> None	0	0	0	0	0
Level at mixer input	-13	-17	-23	-29	-33
BW Corr dB (2000 MHz> 1 MHz)	33	33	33	33	33
Indicated Level (for RBW = 1 MHz) / dBm	-46	-50	-56	-62	-66
DANL (normalized to RBW = 1 Hz) / dBm	-129	-129	-129	-129	-129
DANL (at RBW = 1 MHz, preamp off) / dBm	-69	-69	-69	-69	-69
Distance to DANL / dB	23	19	13	7	3

Dynamic Considerations

Analyzer with inbuilt Preamplifier

Distance / m	03	0.5	1	2	3
FIRP (Tx) / dBm	30	30	30	30	30
Eree Space Loss / dB	58	62	68	74	78
Arriving lovel / dBm	28	32	39	14	10
	-20	-52	-30	-44	-40
Gain of Receiver Horn	25	25	25	25	25
Level at receive antenna output / dBm	-3	-7	-13	-19	-23
Loss by wave guide and other loss (budget) / dB	10	10	10	10	10
Level at analyzer input	-13	-17	-23	-29	-33
Attenuator of analyzer / dB	10	10	10	10	10
Level after attenuator / dBm	-23	-27	-33	-39	-43
Preamplifier Gain	30	30	30	30	30
Level after preamplifier (mixer input) / dBm	7	3	-3	-9	-13
BW Corr dB (2000 MHz> 1 MHz)	33	33	33	33	33
Indicated Level (for RBW = 1 MHz) / dBm	-26	-30	-36	-42	-46
DANL (normalized to RBW = 1 Hz) / dBm	-152	-152	-152	-152	-152
DANL (at RBW = 1 MHz, preamp on) / dBm	-82	-82	-82	-82	-82
Distance to DANL / dB	56	52	46	40	36

Dynamic Considerations

Harmonic Mixer + Preamplifier

Distance / m	0.3	0.5	1	2	3
EIRP (Tx) / dBm	30	30	30	30	30
BW Corr dB (2000 MHz> 1 MHz)	33	33	33	33	33
Free Space Loss / dB	58	62	68	74	78
Arriving level / dBm	-61	-65	-71	-77	-81
Gain of Receiver Horn	25	25	25	25	25
Level at receive antenna output / dBm	-36	-40	-46	-52	-56
Amplifier behind receive antenna: Gain /dB	20	20	20	20	20
Loss by wave guide and other loss (budget) / dB	10	10	10	10	10
Level at mixer input (max7 dBm for 1 dB comp.)	-26	-30	-36	-42	-46
Conversion loss / dB	23	23	23	23	23
Level at mixer output / dBm	-49	-53	-59	-65	-69
Indication Level / dBm (*)	-26	-30	-36	-42	-46
DANL (normalized to RBW = 1 Hz) / dBm	-138	-138	-138	-138	-138
DANL (at RBW = 1 MHz) / dBm	-78	-78	-78	-78	-78
Distance to DANL / dB	52	48	42	36	32

*) no TDF for amplifier or attenuation regarded.

Spurious Measurements

- Requirements
 - Distance for prequalification of spurious frequencies
 - "As close as possible" → recommendation: 20 cm...25 cm
 - Calculation of expected spurious levels
 - Is the pre-qualified spurious still above instrumentation noise floor after attenuation over the air by e.g. 68 dB?

Upper Frequency Limits

Regulatory and RF measurements according to ETSI TR 103 052 V1.1.1. (2011-03) Measurement of RSE and EMI up to 100 GHz (Europe). (FCC up to 200 GHz). This standard gives information on: test environment test equipment test methods calibration and uncertainty

