WLAN 5GHz帯レーダ検 出要求仕様の確認と市場 の概況

- 2015年3月5日-

(株)WiNG 高木映児

アウトライン

- 5 GHz帯WLANの状況
- 5GHz帯WLANのレーダ検知(DFS)要求 について
- DFS帯を使用しづらくしているいくつか の例
- DFS帯の制約を緩和させるためのいくつ かの試み
- ■まとめ

5 GHz WLANの状況

2.4 GHz 帯

良い点

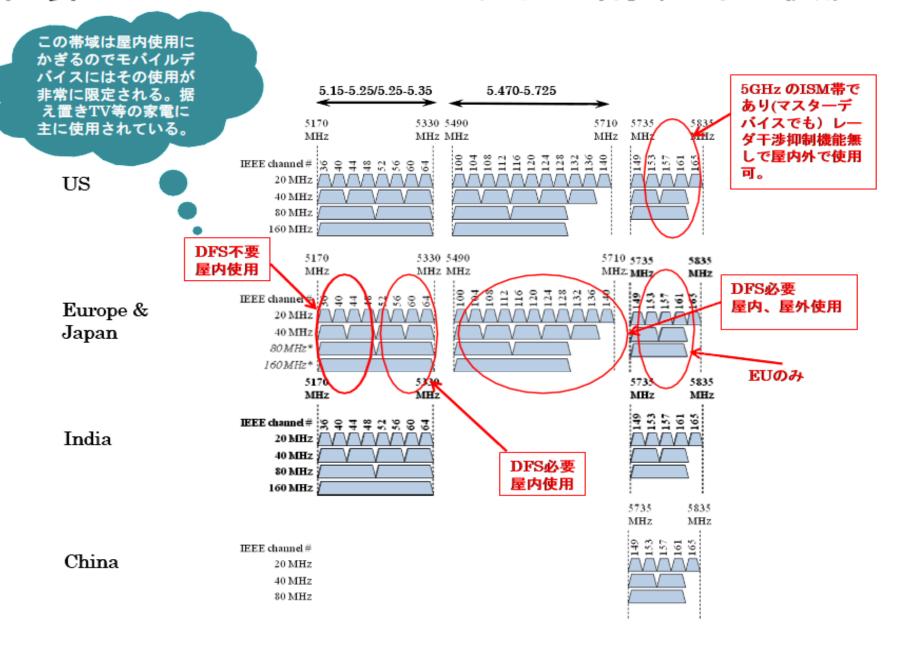
- ■非常普及している
 - ▶世界中の無線LAN機器のほとんどが 802.11b/g(2.4GHz) に対応している(どこ でもつながる)。

制約

- ■割り当てチャネルの限界によるスループットの制約
 - ▶40MHzのBondingは推奨されていない
 - > 80 MHzのBodningおよびそれ以上は使用不可
- ■信号輻輳による不安定な特性
 - ▶チャネル数の制約
 - ✓ 13チャンネル(+1チャネル)あるがチャネルが オーバーラップしているので独立し多チャネルと しては3チャネル(4チャネル)しかない。
 - ▶ISM帯を使用していることによる輻輳
 - ✓ BT、マイクロ波オーブン、ZigBee等、多くの無 線システムが混在しているため無線LANのスルー プットが不安定になる。

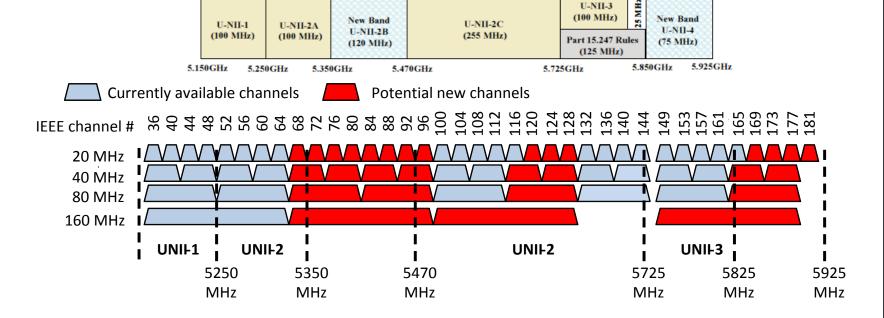
5 GHz 帯

良い点


- ■より多くのチャネルがある(計19チャネル)
 - > W52: 20 MHz x 4 chs (5.15-5.25)
 - > W53: 20 MHz x 4 chs (5.25-5.35)
 - > W56: 20 MHz x 11chs (5.470-5.725)
 - ▶ 160 MHz も可能(11ac)

制約

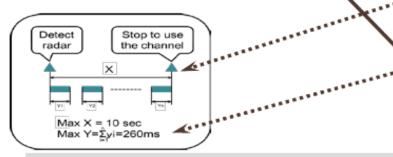
- ■使用場所の制約
 - ▶W52 とW53は屋内でのみ使用可能(屋外に対して20dB減衰相当)
- ■(2.4GHz帯にはない) 具備すべき機能
 - ▶ W53,W56帯についてレーダーへの干渉を回避するメカニズムを搭載する必要がある。 (W53; 5.25-5.35GHz, W56; 5.470-5.725GHz)


世界のWLAN5GHz チャネル割り当て状況

米国5GHz周波数解放状況

he FCC released a Notice of Proposed Rulemaking outlining proposals to amend Part 15 of its Rules governing the operation of Unlicensed National Information Infrastructure (U-NII) devices in the 5 GHz band. The *NPRM* covers potential changes to the rules governing the existing spectrum allocated for U-NII devices as well as the addition of 195 megahertz of spectrum to the 5 GHz U-NII bands. Below is a brief summary of the FCC's proposals. Comments are due 45 days, and reply comments 75 days, respectively, after Federal Register publication of the *NPRM*, which has not yet occurred.

Revision of Part 15 of the Commission's Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band, Notice of Proposed Rulemaking, ET Docket No. 13-49 (rel. Feb. 20, 2013) ("NPRM").



5GHz帯WLANのレーダ検知(DFS)要求について

For DFS Function;

Parameter	Value		
Non-occupancy Period	≥ 30 minutes	1	
Channel Availability Check Time	≥ 60 seconds	ŀ	
Channel Move Time	≤ 10 seconds	-	
Channel Closing Transmission Time	≤ 260 milliseconds		

Table 1: DFS Response Requirement Value

一度あるチャネルでレーダを検出したら、30分 経つ迄そのチャネルを使用することはできない

使用開始する前に1分間、当該チャネルにレーダ が存在しない事を確認しなくてはならない

レーダを検出したら10秒以内にチャネルを移動 しなくてはならない

レーダを検出したら送出したパケットの送積分時間が260mSを越えるまでにチャネルを移動しなくてはならない。

マスター機器はチャネルを使用する前に60秒レーダがいないかモニタ。 またチャネルを使用中もレーダがいないか常にモニタしてレーダを検出したらパケット朝の合計が260ms(サービス時間として10秒)以内に使用を停止し、別のチャネルに移らなければならない。新しいチャネルを使用する前に60秒レーダがいないかモニタしなければならない。

Radar Type	Pulse Repetition Frequency (Hz)	Pulse Width (usec.)	Number of Pulses	Radar Detection Probability
DFS-J1-1	700	1	18	60% or more
DFS-J1-2	260	2.5	18	60% or more

^{*1.} The Channel Loading is 50 % of Maximum Transmission Data Rate.

The case of Po ≥ 200mW; ≥ -64dBm (avg.) / The case of Po < 200mW;Po ≥ -62dBm (avg.) (Po; Max. Transmit Power (EIRP) of EUT)

^{*2.} The receiving threshold level is the following. (This is the average power while receiving radar with an absolute gain 0 dBi antenna.)

USA/EU/JPN DFSテストレーダパラメータ

USA

FCC 0696

Signal types	1, 2, 3, 4, 5, 6 simulated hopping
FCC 1322	
Signal types	0. 1. 2. 3. 4

Europe

ETSI EN 301893 V1.7.1

Signal types 1, 2, 3, 4, 5, 6

ETSI EN 302502 V1.2.1(5.8GHz)

Signal types 1, 2, 3, 4, 5, 6, simulated hopping 1, 2

Japan

US/JPN Parameters of DFS test radar signals

Radar Test Signal	PRI(usec.)	Pulse Width (usec.)	Number of pulse	DFS (%)	Trial/ US	Testing Period	Append l	Appen d2
Radar 1-1	1428(700Hz)	1	18	60	20	15sec	5.3GHz	-
Radar 1-2	3846(260Hz)	2.5	18	60	20	15sec	5.3GHz	-
Radar l	1389(720Hz)	0.5	18	60	20	15sec	5.6GHz	
Radar 2(US1)	1428(700Hz)	1	18	60	20	15sec	5.6GHz	
Radar 3	4000(250Hz)	2	18	60	20	15sec	5.6GHz	Aggregat
Radar 4(US2)	150-230(4348- 6667Hz)	1-5	23-29	60	20	15sec	5.6GHz	ed DFS though 1- 6, over
Radar 5(US3)	200-500(2k- 5kHz)	6-10	16-18	60	20	15sec	5.6GHz	than 80%
Radar 6(US4)	200-500(2k- 5kHz)	11-20	12-16	60	20	15sec	5.6GHz	
Radar 7(US5)	1000-2000(500- 1000Hz)	50-100	1-3 /Burst	80	20	12sec (8- 20 even Intervals)	8-20 Burst /Test Period	5-20MHz Chirp width
Radar 8(US6)	333(3kHz)	1	9/Hop	70	20	300 msec	0.333kHz (Hopping Rate)	-

EU Parameters of DFS test radar signals

ETSI EN 301 893 V1.7.2 (2014-07)

Table D.4: Parameters of radar test signals

Radar test signal # (see note 1 to note 3)	Pulse W	width [us]	Pulse repetition frequency PRF (PPS)		Number of different	Pulses per burst for each
	Min	Max	Min	Мак	PRFs	PRF (PPB) (see note 5)
1	0,5	5	200	1 000	1	10 (see note 6)
2	0,5	15	200	1 600	1	15 (see note 6)
3	0,5	15	2 300	4 000	1	25
4	20	30	2 000	4 000	1	20
5	0,5	2	300	400	2/3	10 (see note 6)
6	0,5	2	400	1 200	2/3	(see note 6)

43

ISI EN 302 502 V1.2.1 (2008-0)

Table D.3.1: DFS Test Signals simulating fixed frequency radars

Radar test signal (see note 2)	gnal W [µs] (see note 5) [pps]		Pulses per burst (see notes 1 and 3)	Detection probability with 30 % channel load (see note 4)	
1 - Fixed	1	750	15	P _d > 60 %	
2 - Variable	1, 2, 5	200, 300, 500, 800, 1 000	10	P _d > 60 %	
3 - Variable	10, 15	200, 300, 500, 800, 1 000	15	P _d > 60 %	
4 - Variable	1, 2, 5, 10, 15	1 200, 1 500, 1 600	15	P _d > 60 %	
5 - Variable	1, 2, 5, 10, 15	2 300, 3 000, 3 500, 4 000	25	P _d > 60 %	
6 - Variable modulated (see note 6)	20, 30	2 000, 3 000, 4 000	20	P _d > 60 %	

44

ETSI EN 302 502 V1.2.1 (2008-07)

Table D.3.2: DFS Test Signals simulating Frequency Hopping radars

Rador test signal	Pulse width W [µs]	Puise repetition frequency PRF [pps]	Pulses per burst	Burst length [ms]		Pulse modulation (see note 1)	Detection probability Pd with 30 % channel load (see note 2)
1	1	3 000	9	3	8	none	(see note 3)
2	20	4 500	9	2	2	chirp	(see note 3)

In Europe there are 175 radars in the 5 GHz frequency band. You may find this information on Internet:

http://www.eumetnet.eu/radar-network (select Band C only).

DFS帯を使用する際の潜在的問題点

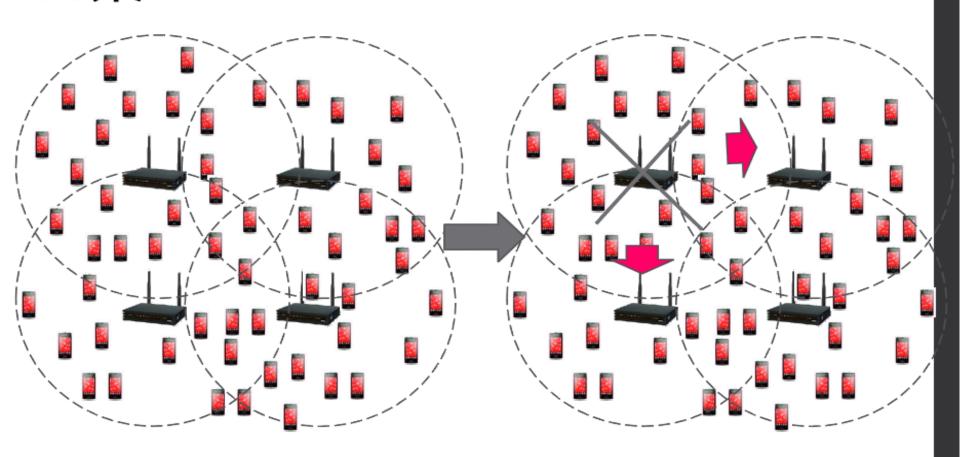
- ■アプリケーションを開始する前に60秒待たなければならない
 - ▶ホームルータのように頻繁にサービスを開始または終了しない機器はあまり影響がないが、Wi-Fi DirectでAd hocに接続 (Miracastで動画を送るなど) する場合にはユーザの使用感が大幅に劣化する。
- ■ユーザがアプリケーションを楽しんでいる際に(レーダを検 出すると)突然60秒間サービスが停止する
 - ▶Wi-Fiで動画を転送している場合には大きな問題となる。
- ■Wi-Fiの信号が混んでいるとき輻輳された信号をレーダと誤 検出することにより上記の60秒間停止が頻繁に起きてしまう.

DFS帯を使用しづらくしているいくつかの例

- ■Wi-Fi テザリング
 - ▶モバイル端末器もレーダ検出アルゴリズムの搭載が必須になってきた
- ■公衆 Wi-Fi
 - ▶Wi-Fi信号が過密になった状況(誤検出)
- ■Video伝送と P-P通信
 - ▶QoSアプリケーション, Miracast (Wi-Fi direct)
- ■自動車
 - ▶社内は屋内とみなされない

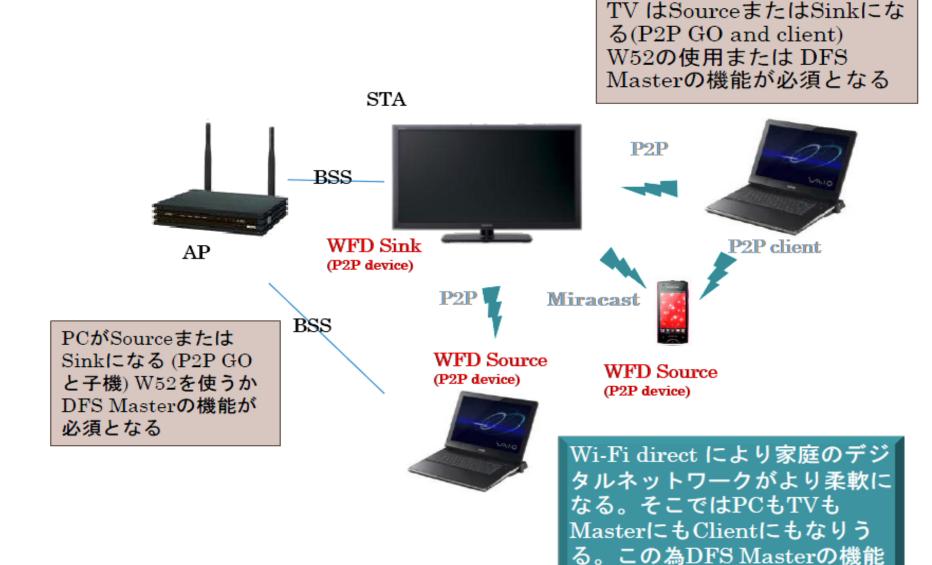
Wi-Fi テザリング

■<u>立ち上がり期:</u>

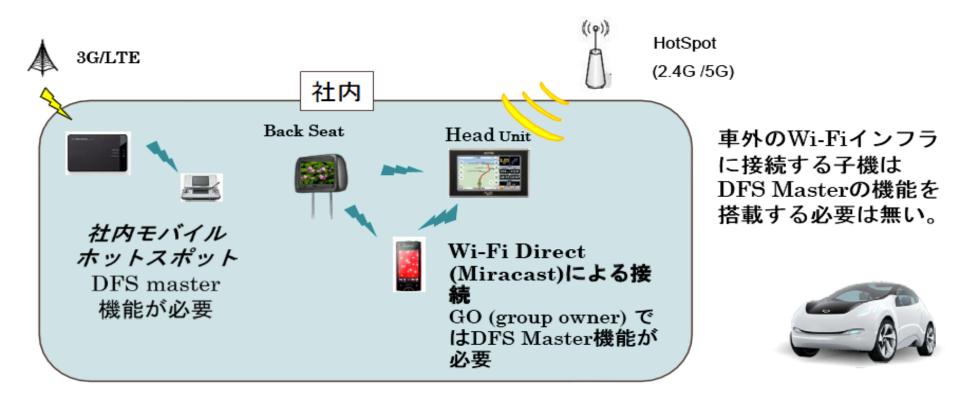

▶携帯電話はWi-Fi子機として動作しマスタデバイス(アクセスポイント)に接続して使用(レーダ干渉回避のアルゴリズムを(マスタとして)実装する必要がなかった)。

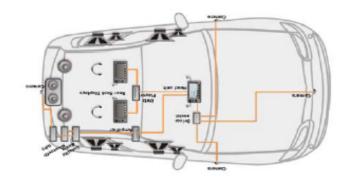
■現在:

▶Wi-Fi テザリングの使用が 普及し、マスターデバイス として動作する機会が増え た。


モバイル端末はWi-Fi接続のためのチャネルを選択することができる。従ってレーダ干渉抑制アルゴリズムを搭載する必要がる。また、非DFS帯であるW52はその必要が無いが、屋内使用限定なので、モバイルデバイスでの使用には制約がある。

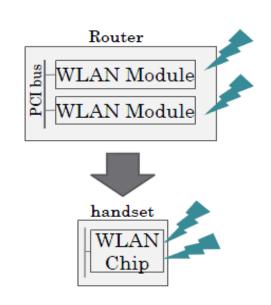
公衆 Wi-Fi

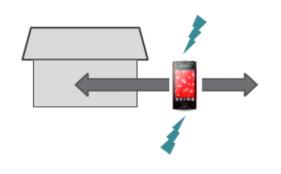

■レーダ誤検出とトリガーとしてアクセスポイント (AP)が サービスを停止すると、エリア内にいた子機が接続を解かれるので、近隣のアクセスポイントに接続を試みる。この為近隣のアクセスポイントの信号量が増えて、サービスダウンの確率が高くなる。


ビデオ送信とP-P通信

を保持している必要がある。

自動車応用


車は屋内と見做されない。従って2.4GHz帯か5GHz帯ではW56のみが使用可能。 レーダ干渉回避アルゴリズムの搭載が義務付けられる。


DFS帯の制約を緩和させるため のいくつかの試み

- ■一分間送波停止問題
 - ▶ルータに二組のWLANモジュールを搭載
 - √高価格帯のWLANルータでは2つのWLANモジュール を搭載。1つは通常のWLAN通信に用い、もう1つを レーダのモニタに使用することにより無音区間の問題を 解決。

- ▶1チップ内に二組のRFブロックを搭載
 - ✓原則は上記の方法と同じだがチップレベルで実現することにより、モバイル端末のような小型、低所費電力のデバイスにも適用可能となる。
- 場所の制約
 - ▶規制の緩和
 - ✓屋内使用帯を何らかの制約(最大出力低減等)を設けることにより屋外でも使用可とする等
- ■レーダ誤検出によるより頻繁なシス テム停止
 - ▶チップに搭載のアルゴリズムの改善

まとめ

- ■5GHzはWLANにとって有望な周波数帯
- ■5GHz帯の使いやすさを制限する1つの要因は レーダシステムとの干渉抑制の為の実装並びに 制約である
- ■DFSの扱いはより重要になってきたなぜなら;
 - ▶Wi-Fiモバイル端末がマスターデバイスとなる使い方が普及してきている
 - ▶QoS (video)アプリケーションが普及してきている.
 - ▶信号量が増え、輻輳によるレーダ誤検出の機会が増えてきている
- Chip vendors and WLAN equip vendors are challenging to alleviate this problem and also worldwide harmonization is on going to expand the band and for taking usability step further